\(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+C \sec ^2(c+d x)) \, dx\) [1094]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 154 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {4 a^2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 (A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (A-5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}} \]

[Out]

4*a^2*(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+8/3*a^2*(A
+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*C*(a+a*cos(d*x
+c))^2*sin(d*x+c)/d/cos(d*x+c)^(3/2)+8/3*C*(a^2+a^2*cos(d*x+c))*sin(d*x+c)/d/cos(d*x+c)^(1/2)+2/3*a^2*(A-5*C)*
sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {4199, 3123, 3054, 3047, 3102, 2827, 2720, 2719} \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {8 a^2 (A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a^2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {8 C \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]

[Out]

(4*a^2*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (8*a^2*(A + C)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*(A - 5*
C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*C*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))
 + (8*C*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rule 4199

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sec[(e_.)
 + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A
*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a+a \cos (c+d x))^2 \left (C+A \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \int \frac {(a+a \cos (c+d x))^2 \left (2 a C+\frac {3}{2} a (A-C) \cos (c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{3 a} \\ & = \frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {4 \int \frac {(a+a \cos (c+d x)) \left (\frac {3}{4} a^2 (A+3 C)+\frac {3}{4} a^2 (A-5 C) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx}{3 a} \\ & = \frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {4 \int \frac {\frac {3}{4} a^3 (A+3 C)+\left (\frac {3}{4} a^3 (A-5 C)+\frac {3}{4} a^3 (A+3 C)\right ) \cos (c+d x)+\frac {3}{4} a^3 (A-5 C) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{3 a} \\ & = \frac {2 a^2 (A-5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {8 \int \frac {\frac {3}{2} a^3 (A+C)+\frac {9}{4} a^3 (A-C) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{9 a} \\ & = \frac {2 a^2 (A-5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\left (2 a^2 (A-C)\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (4 a^2 (A+C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {4 a^2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 (A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (A-5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.52 (sec) , antiderivative size = 1040, normalized size of antiderivative = 6.75 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {\cos ^{\frac {9}{2}}(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \left (-\frac {(A-2 C+A \cos (2 c)) \csc (c) \sec (c)}{d}+\frac {A \cos (d x) \sin (c)}{3 d}+\frac {A \cos (c) \sin (d x)}{3 d}+\frac {C \sec (c) \sec ^2(c+d x) \sin (d x)}{3 d}+\frac {\sec (c) \sec (c+d x) (C \sin (c)+6 C \sin (d x))}{3 d}\right )}{A+2 C+A \cos (2 c+2 d x)}-\frac {4 A \cos ^4(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}-\frac {4 C \cos ^4(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}-\frac {A \cos ^4(c+d x) \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (A+2 C+A \cos (2 c+2 d x))}+\frac {C \cos ^4(c+d x) \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (A+2 C+A \cos (2 c+2 d x))} \]

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]

[Out]

(Cos[c + d*x]^(9/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*(-(((A - 2*C + A*Cos[2*
c])*Csc[c]*Sec[c])/d) + (A*Cos[d*x]*Sin[c])/(3*d) + (A*Cos[c]*Sin[d*x])/(3*d) + (C*Sec[c]*Sec[c + d*x]^2*Sin[d
*x])/(3*d) + (Sec[c]*Sec[c + d*x]*(C*Sin[c] + 6*C*Sin[d*x]))/(3*d)))/(A + 2*C + A*Cos[2*c + 2*d*x]) - (4*A*Cos
[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a +
 a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-
(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + A*
Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (4*C*Cos[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*
x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot
[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1
+ Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (A*Cos[c + d*x]^4*Csc[
c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4},
 Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 +
Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((S
in[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]
)/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(A + 2*C + A*Cos[2*c +
 2*d*x])) + (C*Cos[c + d*x]^4*Csc[c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*((Hype
rgeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Co
s[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Ta
n[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x +
ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[
c]^2]]))/(d*(A + 2*C + A*Cos[2*c + 2*d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(650\) vs. \(2(192)=384\).

Time = 2.12 (sec) , antiderivative size = 651, normalized size of antiderivative = 4.23

method result size
default \(\frac {4 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (4 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-4 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 A \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-6 A \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-12 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+4 C \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+6 C \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+7 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(651\)

[In]

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

4/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)
^2+1)/sin(1/2*d*x+1/2*c)^3*(4*A*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-4*A*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1
/2*c)+4*A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*
sin(1/2*d*x+1/2*c)^2-6*A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-12*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+4*C*(2*sin(1/2*d*x+1/2*c)^2-1
)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+6*C*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2
+A*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*E
llipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti
cE(cos(1/2*d*x+1/2*c),2^(1/2))+7*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1
/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)
^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.42 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 \, {\left (2 i \, \sqrt {2} {\left (A + C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 2 i \, \sqrt {2} {\left (A + C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (A - C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (A - C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (A a^{2} \cos \left (d x + c\right )^{2} + 6 \, C a^{2} \cos \left (d x + c\right ) + C a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{3 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

-2/3*(2*I*sqrt(2)*(A + C)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 2*I*s
qrt(2)*(A + C)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(A -
 C)*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I
*sqrt(2)*(A - C)*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x
 + c))) - (A*a^2*cos(d*x + c)^2 + 6*C*a^2*cos(d*x + c) + C*a^2)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x +
c)^2)

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c))**2*(A+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 19.13 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.05 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,A\,a^2\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+6\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,C\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,C\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(3/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2,x)

[Out]

(2*A*a^2*(cos(c + d*x)^(1/2)*sin(c + d*x) + 6*ellipticE(c/2 + (d*x)/2, 2) + 4*ellipticF(c/2 + (d*x)/2, 2)))/(3
*d) + (2*C*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (4*C*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)
^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*C*a^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c +
 d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2))